- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this work we introduce and analyze a mixed virtual element method (mixed-VEM) for the two-dimensional stationary Boussinesq problem. The continuous formulation is based on the introduction of a pseudostress tensor depending nonlinearly on the velocity, which allows to obtain an equivalent model in which the main unknowns are given by the aforementioned pseudostress tensor, the velocity and the temperature, whereas the pressure is computed via a postprocessing formula. In addition, an augmented approach together with a fixed point strategy is used to analyze the well-posedness of the resulting continuous formulation. Regarding the discrete problem, we follow the approach employed in a previous work dealing with the Navier-Stokes equations, and couple it with a VEM for the convection-diffusion equation modelling the temperature. More precisely, we use a mixed-VEM for the scheme associated with the fluid equations in such a way that the pseudostress and the velocity are approximated on virtual element subspaces of $\mathbb{H}$(div) and $\boldsymbol{H}^1$, respectively, whereas a VEM is proposed to approximate the temperature on a virtual element subspace of $H^1$. In this way, we make use of the $L^2$-orthogonal projectors onto suitable polynomial spaces, which allows the explicit integration of the terms that appear in the bilinear and trilinear forms involved in the scheme for the fluid equations. On the other hand, in order to manipulate the bilinear form associated to the heat equations, we define a suitable projector onto a space of polynomials to deal with the fact that the diffusion tensor, which represents the thermal conductivity, is variable. Next, the corresponding solvability analysis is performed using again appropriate fixed-point arguments. Further, Strang-type estimates are applied to derive the a priori error estimates for the components of the virtual element solution as well as for the fully computable projections of them and the postprocessed pressure. The corresponding rates of convergence are also established. Finally, several numerical examples illustrating the performance of the mixed-VEM scheme and confirming these theoretical rates are presented.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2001-m2019-0187}, url = {http://global-sci.org/intro/article_detail/jcm/18742.html} }In this work we introduce and analyze a mixed virtual element method (mixed-VEM) for the two-dimensional stationary Boussinesq problem. The continuous formulation is based on the introduction of a pseudostress tensor depending nonlinearly on the velocity, which allows to obtain an equivalent model in which the main unknowns are given by the aforementioned pseudostress tensor, the velocity and the temperature, whereas the pressure is computed via a postprocessing formula. In addition, an augmented approach together with a fixed point strategy is used to analyze the well-posedness of the resulting continuous formulation. Regarding the discrete problem, we follow the approach employed in a previous work dealing with the Navier-Stokes equations, and couple it with a VEM for the convection-diffusion equation modelling the temperature. More precisely, we use a mixed-VEM for the scheme associated with the fluid equations in such a way that the pseudostress and the velocity are approximated on virtual element subspaces of $\mathbb{H}$(div) and $\boldsymbol{H}^1$, respectively, whereas a VEM is proposed to approximate the temperature on a virtual element subspace of $H^1$. In this way, we make use of the $L^2$-orthogonal projectors onto suitable polynomial spaces, which allows the explicit integration of the terms that appear in the bilinear and trilinear forms involved in the scheme for the fluid equations. On the other hand, in order to manipulate the bilinear form associated to the heat equations, we define a suitable projector onto a space of polynomials to deal with the fact that the diffusion tensor, which represents the thermal conductivity, is variable. Next, the corresponding solvability analysis is performed using again appropriate fixed-point arguments. Further, Strang-type estimates are applied to derive the a priori error estimates for the components of the virtual element solution as well as for the fully computable projections of them and the postprocessed pressure. The corresponding rates of convergence are also established. Finally, several numerical examples illustrating the performance of the mixed-VEM scheme and confirming these theoretical rates are presented.