- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Here we consider the numerical approximations of the 2D simplified Ericksen-Leslie system. We first rewrite the system and get a new system. For the new system, we propose an easy-to-implement time discretization scheme which preserves the sphere constraint at each node, enjoys a discrete energy law, and leads to linear and decoupled elliptic equations to be solved at each time step. A discrete maximum principle of the scheme in the finite element form is also proved. Some numerical simulations are performed to validate the scheme and simulate the dynamic motion of liquid crystals.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1906-m2018-0144}, url = {http://global-sci.org/intro/article_detail/jcm/18275.html} }Here we consider the numerical approximations of the 2D simplified Ericksen-Leslie system. We first rewrite the system and get a new system. For the new system, we propose an easy-to-implement time discretization scheme which preserves the sphere constraint at each node, enjoys a discrete energy law, and leads to linear and decoupled elliptic equations to be solved at each time step. A discrete maximum principle of the scheme in the finite element form is also proved. Some numerical simulations are performed to validate the scheme and simulate the dynamic motion of liquid crystals.