- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We study the recovery conditions of weighted mixed $\ell_2/\ell_p$ minimization for block sparse signal reconstruction from compressed measurements when partial block support information is available. We show theoretically that the extended block restricted isometry property can ensure robust recovery when the data fidelity constraint is expressed in terms of an $\ell_q$ norm of the residual error, thus establishing a setting wherein we are not restricted to Gaussian measurement noise. We illustrate the results with a series of numerical experiments.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1905-m2018-0256}, url = {http://global-sci.org/intro/article_detail/jcm/16969.html} }We study the recovery conditions of weighted mixed $\ell_2/\ell_p$ minimization for block sparse signal reconstruction from compressed measurements when partial block support information is available. We show theoretically that the extended block restricted isometry property can ensure robust recovery when the data fidelity constraint is expressed in terms of an $\ell_q$ norm of the residual error, thus establishing a setting wherein we are not restricted to Gaussian measurement noise. We illustrate the results with a series of numerical experiments.