- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this work, we adapt and compare implicity linear collocation method and iterated implicity linear collocation method for solving nonlinear two dimensional Fredholm integral equations of Hammerstein type using IMQ-RBFs on a non-rectangular domain. IMQs show to be the most promising RBFs for this kind of equations. The proposed methods are mesh-free and they are independent of the geometry of domain. Convergence analysis of the proposed methods together with some benchmark examples is provided which support their reliability and numerical stability.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1903-m2017-0206}, url = {http://global-sci.org/intro/article_detail/jcm/16466.html} }In this work, we adapt and compare implicity linear collocation method and iterated implicity linear collocation method for solving nonlinear two dimensional Fredholm integral equations of Hammerstein type using IMQ-RBFs on a non-rectangular domain. IMQs show to be the most promising RBFs for this kind of equations. The proposed methods are mesh-free and they are independent of the geometry of domain. Convergence analysis of the proposed methods together with some benchmark examples is provided which support their reliability and numerical stability.