- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 38 (2020), pp. 337-354.
Published online: 2020-02
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
We investigate the problem of robust matrix completion with a fraction of observation corrupted by sparsity outlier noise. We propose an algorithmic framework based on the ADMM algorithm for a non-convex optimization, whose objective function consists of an $\ell_1$ norm data fidelity and a rank constraint. To reduce the computational cost per iteration, two inexact schemes are developed to replace the most time-consuming step in the generic ADMM algorithm. The resulting algorithms remarkably outperform the existing solvers for robust matrix completion with outlier noise. When the noise is severe and the underlying matrix is ill-conditioned, the proposed algorithms are faster and give more accurate solutions than state-of-the-art robust matrix completion approaches.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1809-m2018-0106}, url = {http://global-sci.org/intro/article_detail/jcm/14520.html} }We investigate the problem of robust matrix completion with a fraction of observation corrupted by sparsity outlier noise. We propose an algorithmic framework based on the ADMM algorithm for a non-convex optimization, whose objective function consists of an $\ell_1$ norm data fidelity and a rank constraint. To reduce the computational cost per iteration, two inexact schemes are developed to replace the most time-consuming step in the generic ADMM algorithm. The resulting algorithms remarkably outperform the existing solvers for robust matrix completion with outlier noise. When the noise is severe and the underlying matrix is ill-conditioned, the proposed algorithms are faster and give more accurate solutions than state-of-the-art robust matrix completion approaches.