- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The goal of this paper is to present a numerical method for the Smoluchowski equation, a drift-diffusion equation on the sphere, arising in the modelling of particle dynamics. The numerical method uses radial basis functions (RBF). This is a relatively new approach, which has recently mainly been used for geophysical applications. For a simplified model problem we compare the RBF approach with a spectral method, i.e. the standard approach used in related physical applications. This comparison as well as our other accuracy studies shows that RBF methods are an attractive alternative for this kind of models.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1908-m2018-0211}, url = {http://global-sci.org/intro/article_detail/jcm/13690.html} }The goal of this paper is to present a numerical method for the Smoluchowski equation, a drift-diffusion equation on the sphere, arising in the modelling of particle dynamics. The numerical method uses radial basis functions (RBF). This is a relatively new approach, which has recently mainly been used for geophysical applications. For a simplified model problem we compare the RBF approach with a spectral method, i.e. the standard approach used in related physical applications. This comparison as well as our other accuracy studies shows that RBF methods are an attractive alternative for this kind of models.