- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a class of 12 degrees of freedom triangular plate bending elements with quadratic rate of convergence. They may be viewed as the second order Specht triangle, while the Specht triangle is one of the best first order plate bending elements. The convergence result is proved under minimal smoothness assumption on the solution. Numerical results for both the smooth solution and nonsmooth solution confirm the theoretical prediction.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1905-m2018-0195}, url = {http://global-sci.org/intro/article_detail/jcm/13687.html} }We propose a class of 12 degrees of freedom triangular plate bending elements with quadratic rate of convergence. They may be viewed as the second order Specht triangle, while the Specht triangle is one of the best first order plate bending elements. The convergence result is proved under minimal smoothness assumption on the solution. Numerical results for both the smooth solution and nonsmooth solution confirm the theoretical prediction.