- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We design and numerically validate a recovery based linear finite element method for solving the biharmonic equation. The main idea is to replace the gradient operator $\nabla$ on linear finite element space by $G(\nabla)$ in the weak formulation of the biharmonic equation, where $G$ is the recovery operator which recovers the piecewise constant function into the linear finite element space. By operator $G$, Laplace operator $\Delta$ is replaced by $\nabla\cdot G(\nabla)$. Furthermore, the boundary condition on normal derivative $\nabla u\cdot \pmb{n}$ is treated by the boundary penalty method. The explicit matrix expression of the proposed method is also introduced. Numerical examples on the uniform and adaptive meshes are presented to illustrate the correctness and effectiveness of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1902-m2018-0187}, url = {http://global-sci.org/intro/article_detail/jcm/13686.html} }We design and numerically validate a recovery based linear finite element method for solving the biharmonic equation. The main idea is to replace the gradient operator $\nabla$ on linear finite element space by $G(\nabla)$ in the weak formulation of the biharmonic equation, where $G$ is the recovery operator which recovers the piecewise constant function into the linear finite element space. By operator $G$, Laplace operator $\Delta$ is replaced by $\nabla\cdot G(\nabla)$. Furthermore, the boundary condition on normal derivative $\nabla u\cdot \pmb{n}$ is treated by the boundary penalty method. The explicit matrix expression of the proposed method is also introduced. Numerical examples on the uniform and adaptive meshes are presented to illustrate the correctness and effectiveness of the proposed method.