- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A convex two-stage non-cooperative multi-agent game under uncertainty is formulated as a two-stage stochastic variational inequality (SVI). Under standard assumptions, we provide sufficient conditions for the existence of solutions of the two-stage SVI and propose a regularized sample average approximation method for solving it. We prove the convergence of the method as the regularization parameter tends to zero and the sample size tends to infinity. Moreover, our approach is applied to a two-stage stochastic production and supply planning problem with homogeneous commodity in an oligopolistic market. Numerical results based on historical data in crude oil market are presented to demonstrate the effectiveness of the two-stage SVI in describing the market share of oil producing agents.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1906-m2019-0025}, url = {http://global-sci.org/intro/article_detail/jcm/13376.html} }A convex two-stage non-cooperative multi-agent game under uncertainty is formulated as a two-stage stochastic variational inequality (SVI). Under standard assumptions, we provide sufficient conditions for the existence of solutions of the two-stage SVI and propose a regularized sample average approximation method for solving it. We prove the convergence of the method as the regularization parameter tends to zero and the sample size tends to infinity. Moreover, our approach is applied to a two-stage stochastic production and supply planning problem with homogeneous commodity in an oligopolistic market. Numerical results based on historical data in crude oil market are presented to demonstrate the effectiveness of the two-stage SVI in describing the market share of oil producing agents.