- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper aims to present a fairly accessible generalization of several symmetric Gauss-Seidel decomposition based multi-block proximal alternating direction methods of multipliers (ADMMs) for convex composite optimization problems. The proposed method unifies and refines many constructive techniques that were separately developed for the computational efficiency of multi-block ADMM-type algorithms. Specifically, the majorized augmented Lagrangian functions, the indefinite proximal terms, the inexact symmetric Gauss-Seidel decomposition theorem, the tolerance criteria of approximately solving the subproblems, and the large dual step-lengths, are all incorporated in one algorithmic framework, which we named as sGS-imiPADMM. From the popularity of convergent variants of multi-block ADMMs in recent years, especially for high-dimensional multi-block convex composite conic programming problems, the unification presented in this paper, as well as the corresponding convergence results, may have the great potential of facilitating the implementation of many multi-block ADMMs in various problem settings.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1803-m2018-0278}, url = {http://global-sci.org/intro/article_detail/jcm/13372.html} }This paper aims to present a fairly accessible generalization of several symmetric Gauss-Seidel decomposition based multi-block proximal alternating direction methods of multipliers (ADMMs) for convex composite optimization problems. The proposed method unifies and refines many constructive techniques that were separately developed for the computational efficiency of multi-block ADMM-type algorithms. Specifically, the majorized augmented Lagrangian functions, the indefinite proximal terms, the inexact symmetric Gauss-Seidel decomposition theorem, the tolerance criteria of approximately solving the subproblems, and the large dual step-lengths, are all incorporated in one algorithmic framework, which we named as sGS-imiPADMM. From the popularity of convergent variants of multi-block ADMMs in recent years, especially for high-dimensional multi-block convex composite conic programming problems, the unification presented in this paper, as well as the corresponding convergence results, may have the great potential of facilitating the implementation of many multi-block ADMMs in various problem settings.