- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider elliptic hemivariational inequalities arising in applications in semipermeable media. In its general form, the model includes both interior and boundary semipermeability terms. Detailed study is given on the hemivariational inequality in the case of isotropic and homogeneous semipermeable media. Solution existence and uniqueness of the problem are explored. Convergence of the Galerkin method is shown under the basic solution regularity available from the existence result. An optimal order error estimate is derived for the linear finite element solution under suitable solution regularity assumptions. The results can be readily extended to the study of more general hemivariational inequalities for non-isotropic and heterogeneous semipermeable media with interior semipermeability and/or boundary semipermeability. Numerical examples are presented to show the performance of the finite element approximations; in particular, the theoretically predicted optimal first order convergence in $H^1$ norm of the linear element solutions is clearly observed.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1807-m2018-0035}, url = {http://global-sci.org/intro/article_detail/jcm/13006.html} }In this paper, we consider elliptic hemivariational inequalities arising in applications in semipermeable media. In its general form, the model includes both interior and boundary semipermeability terms. Detailed study is given on the hemivariational inequality in the case of isotropic and homogeneous semipermeable media. Solution existence and uniqueness of the problem are explored. Convergence of the Galerkin method is shown under the basic solution regularity available from the existence result. An optimal order error estimate is derived for the linear finite element solution under suitable solution regularity assumptions. The results can be readily extended to the study of more general hemivariational inequalities for non-isotropic and heterogeneous semipermeable media with interior semipermeability and/or boundary semipermeability. Numerical examples are presented to show the performance of the finite element approximations; in particular, the theoretically predicted optimal first order convergence in $H^1$ norm of the linear element solutions is clearly observed.