- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 37 (2019), pp. 340-348.
Published online: 2018-09
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
Local Fourier analysis (LFA) is a useful tool in predicting the convergence factors of geometric multigrid methods (GMG). As is well known, on rectangular domains with periodic boundary conditions this analysis gives the exact convergence factors of such methods. When other boundary conditions are considered, however, this analysis was judged as been heuristic, with limited capabilities in predicting multigrid convergence rates. In this work, using the Fourier method, we extend these results by proving that such analysis yields the exact convergence factors for a wider class of problems, some of which cannot be handled by the traditional rigorous Fourier analysis.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1803-m2017-0294}, url = {http://global-sci.org/intro/article_detail/jcm/12725.html} }Local Fourier analysis (LFA) is a useful tool in predicting the convergence factors of geometric multigrid methods (GMG). As is well known, on rectangular domains with periodic boundary conditions this analysis gives the exact convergence factors of such methods. When other boundary conditions are considered, however, this analysis was judged as been heuristic, with limited capabilities in predicting multigrid convergence rates. In this work, using the Fourier method, we extend these results by proving that such analysis yields the exact convergence factors for a wider class of problems, some of which cannot be handled by the traditional rigorous Fourier analysis.