- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
As is known, there exist numerous alternating direction implicit (ADI) schemes for the two-dimensional linear time fractional partial differential equations (PDEs). However, if the ADI schemes for linear problems combined with local linearization techniques are applied to solve nonlinear problems, the stability and convergence of the methods are often not clear. In this paper, two ADI schemes are developed for solving the two-dimensional time fractional nonlinear super-diffusion equations based on their equivalent partial integro-differential equations. In these two schemes, the standard second-order central difference approximation is used for the spatial discretization, and the classical first-order approximation is applied to discretize the Riemann-Liouville fractional integral in time. The solvability, unconditional stability and $L_2$ norm convergence of the proposed ADI schemes are proved rigorously. The convergence order of the schemes is $O(τ + h^2_x + h^2_y)$, where $τ$ is the temporal mesh size, $h_x$ and $h_y$ are spatial mesh sizes in the $x$ and $y$ directions, respectively. Finally, numerical experiments are carried out to support the theoretical results and demonstrate the performances of two ADI schemes.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1802-m2017-0196}, url = {http://global-sci.org/intro/article_detail/jcm/12723.html} }As is known, there exist numerous alternating direction implicit (ADI) schemes for the two-dimensional linear time fractional partial differential equations (PDEs). However, if the ADI schemes for linear problems combined with local linearization techniques are applied to solve nonlinear problems, the stability and convergence of the methods are often not clear. In this paper, two ADI schemes are developed for solving the two-dimensional time fractional nonlinear super-diffusion equations based on their equivalent partial integro-differential equations. In these two schemes, the standard second-order central difference approximation is used for the spatial discretization, and the classical first-order approximation is applied to discretize the Riemann-Liouville fractional integral in time. The solvability, unconditional stability and $L_2$ norm convergence of the proposed ADI schemes are proved rigorously. The convergence order of the schemes is $O(τ + h^2_x + h^2_y)$, where $τ$ is the temporal mesh size, $h_x$ and $h_y$ are spatial mesh sizes in the $x$ and $y$ directions, respectively. Finally, numerical experiments are carried out to support the theoretical results and demonstrate the performances of two ADI schemes.