- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper presents an investigation on the anomalous diffusion in finite length fingers comb frame, the time and space Riesz fractional Cattaneo-Christov flux is introduced with the Oldroyds' upper convective derivative and the effect of Poiseuille flow is also taken into account. Formulated governing equation possesses the coexisting characteristics of parabolicity and hyperbolicity. Numerical solution is obtained by the L1-scheme and shifted Grünwald formulae, which is verified by introducing a source item to construct an exact solution. The effects, such as time and space fractional parameters, relaxation parameter and the ratio of the pressure gradient and viscosity coefficient, on the spatial and temporal evolution of particles distribution and dynamic characteristics are shown graphically and analyzed in detail.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1702-m2016-0627}, url = {http://global-sci.org/intro/article_detail/jcm/12305.html} }This paper presents an investigation on the anomalous diffusion in finite length fingers comb frame, the time and space Riesz fractional Cattaneo-Christov flux is introduced with the Oldroyds' upper convective derivative and the effect of Poiseuille flow is also taken into account. Formulated governing equation possesses the coexisting characteristics of parabolicity and hyperbolicity. Numerical solution is obtained by the L1-scheme and shifted Grünwald formulae, which is verified by introducing a source item to construct an exact solution. The effects, such as time and space fractional parameters, relaxation parameter and the ratio of the pressure gradient and viscosity coefficient, on the spatial and temporal evolution of particles distribution and dynamic characteristics are shown graphically and analyzed in detail.