- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Recently, a kind of high order hybrid methods based on Runge-Kutta discontinuous Galerkin (RKDG) method and weighted essentially non-oscillatory finite difference (WENO-FD) scheme was proposed. Those methods are computationally efficient, however, stable problems might sometimes be encountered in practical applications. In this work, we first analyze the linear stabilities of those methods based on the Heuristic theory. We find that the conservative hybrid method is linearly unstable if the numerical flux at the coupling interface is chosen to be 'downstream'. Then we introduce two ways of healing this defect. One is to choose the numerical flux at the coupling interface to be 'upstream'. The other is to employ a slope limiter function to enforce the hybrid method satisfying the local total variation diminishing (TVD) condition. In the end, numerical experiments are provided to validate the effectiveness of the proposed methods.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1702-m2016-0707}, url = {http://global-sci.org/intro/article_detail/jcm/12303.html} }Recently, a kind of high order hybrid methods based on Runge-Kutta discontinuous Galerkin (RKDG) method and weighted essentially non-oscillatory finite difference (WENO-FD) scheme was proposed. Those methods are computationally efficient, however, stable problems might sometimes be encountered in practical applications. In this work, we first analyze the linear stabilities of those methods based on the Heuristic theory. We find that the conservative hybrid method is linearly unstable if the numerical flux at the coupling interface is chosen to be 'downstream'. Then we introduce two ways of healing this defect. One is to choose the numerical flux at the coupling interface to be 'upstream'. The other is to employ a slope limiter function to enforce the hybrid method satisfying the local total variation diminishing (TVD) condition. In the end, numerical experiments are provided to validate the effectiveness of the proposed methods.