- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The present article is concerned with the numerical solution of boundary integral equations by an adaptive wavelet boundary element method. This method approximates the solution with a computational complexity that is proportional to the solution's best $N$-term approximation. The focus of this article is on algorithmic issues which includes the crucial building blocks and details about the efficient implementation. By numerical examples for the Laplace equation and the Helmholtz equation, solved for different geometries and right-hand sides, we validate the feasibility and efficiency of the adaptive wavelet boundary element method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1610-m2016-0496}, url = {http://global-sci.org/intro/article_detail/jcm/10584.html} }The present article is concerned with the numerical solution of boundary integral equations by an adaptive wavelet boundary element method. This method approximates the solution with a computational complexity that is proportional to the solution's best $N$-term approximation. The focus of this article is on algorithmic issues which includes the crucial building blocks and details about the efficient implementation. By numerical examples for the Laplace equation and the Helmholtz equation, solved for different geometries and right-hand sides, we validate the feasibility and efficiency of the adaptive wavelet boundary element method.