- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In my earlier paper [4], an eigen-decompositions of the Laplacian operator is given on a unit regular hexagon with periodic boundary conditions. Since an exact decomposition with Dirichlet boundary conditions has not been explored in terms of any elementary form. In this paper, we investigate an approximate eigen-decomposition. The function space, corresponding all eigenfunction, have been decomposed into four orthogonal subspaces. Estimations of the first eight smallest eigenvalues and related orthogonal functions are given. In particular, we obtain an approximate value of the smallest eigenvalue $\lambda_1$~$\frac{29}{40} \pi^2=7.1555$, the absolute error is less than 0.0001.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10328.html} }In my earlier paper [4], an eigen-decompositions of the Laplacian operator is given on a unit regular hexagon with periodic boundary conditions. Since an exact decomposition with Dirichlet boundary conditions has not been explored in terms of any elementary form. In this paper, we investigate an approximate eigen-decomposition. The function space, corresponding all eigenfunction, have been decomposed into four orthogonal subspaces. Estimations of the first eight smallest eigenvalues and related orthogonal functions are given. In particular, we obtain an approximate value of the smallest eigenvalue $\lambda_1$~$\frac{29}{40} \pi^2=7.1555$, the absolute error is less than 0.0001.