- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a simple numerical method for calculating both unsteady and steady state solution of hyperbolic system with geometrical source terms having concentrations. Physical problems under consideration include the shallow water equations with topography, and the quasi one-dimensional nozzle flows. We use the interface value, rather than the cell-averages, for the source terms, which results in a well-balanced scheme that can capture the steady state solution with a remarkable accuracy. This method approximates the source terms via the numerical fluxes produced by an (approximate) Riemann solver for the homogeneous hyperbolic systems with slight additional computation complexity using Newton's iterations and numerical integrations. This method solves well the sub- or super-critical flows, and with a transonic fix, also handles well the transonic flows over the concentration. Numerical examples provide strong evidence on the effectiveness of this new method for both unsteady and steady state calculations.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10326.html} }We propose a simple numerical method for calculating both unsteady and steady state solution of hyperbolic system with geometrical source terms having concentrations. Physical problems under consideration include the shallow water equations with topography, and the quasi one-dimensional nozzle flows. We use the interface value, rather than the cell-averages, for the source terms, which results in a well-balanced scheme that can capture the steady state solution with a remarkable accuracy. This method approximates the source terms via the numerical fluxes produced by an (approximate) Riemann solver for the homogeneous hyperbolic systems with slight additional computation complexity using Newton's iterations and numerical integrations. This method solves well the sub- or super-critical flows, and with a transonic fix, also handles well the transonic flows over the concentration. Numerical examples provide strong evidence on the effectiveness of this new method for both unsteady and steady state calculations.