- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Exponential time differencing schemes are time integration methods that can be efficiently combined with spatial spectral approximations to provide very high resolution to the smooth solutions of some linear and nonlinear partial differential equations. We study in this paper the stability properties of some exponential time differencing schemes. We also present their application to the numerical solution of the scalar Allen-Cahn equation in two and three dimensional spaces.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10323.html} }Exponential time differencing schemes are time integration methods that can be efficiently combined with spatial spectral approximations to provide very high resolution to the smooth solutions of some linear and nonlinear partial differential equations. We study in this paper the stability properties of some exponential time differencing schemes. We also present their application to the numerical solution of the scalar Allen-Cahn equation in two and three dimensional spaces.