- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Three Dimension Quasi-Wilson Element for Flat Hexahedron Meshes
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-22-178,
author = {Chen , ShaochunShi , Dongyang and Ren , Guobiao},
title = {Three Dimension Quasi-Wilson Element for Flat Hexahedron Meshes},
journal = {Journal of Computational Mathematics},
year = {2004},
volume = {22},
number = {2},
pages = {178--187},
abstract = {
The well known Wilson's brick is only convergent for regular cuboid meshes. In this paper a quasi-Wilson element of three dimension is presented which is convergent for any hexahedron meshes. Meanwhile the element is anisotropic, that is it can be used to any flat hexahedron meshes for which the regular condition is unnecessary.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10321.html} }
TY - JOUR
T1 - Three Dimension Quasi-Wilson Element for Flat Hexahedron Meshes
AU - Chen , Shaochun
AU - Shi , Dongyang
AU - Ren , Guobiao
JO - Journal of Computational Mathematics
VL - 2
SP - 178
EP - 187
PY - 2004
DA - 2004/04
SN - 22
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/10321.html
KW - Nonconforming element, Three dimension Quasi-Wilson element, Anisotropic convergence.
AB -
The well known Wilson's brick is only convergent for regular cuboid meshes. In this paper a quasi-Wilson element of three dimension is presented which is convergent for any hexahedron meshes. Meanwhile the element is anisotropic, that is it can be used to any flat hexahedron meshes for which the regular condition is unnecessary.
Chen , ShaochunShi , Dongyang and Ren , Guobiao. (2004). Three Dimension Quasi-Wilson Element for Flat Hexahedron Meshes.
Journal of Computational Mathematics. 22 (2).
178-187.
doi:
Copy to clipboard