- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Boundedness and Asymptotic Stability of Multistep Methods for Generalized Pantograph Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-22-447,
author = {Zhang , Chengjian and Sun , Geng},
title = {Boundedness and Asymptotic Stability of Multistep Methods for Generalized Pantograph Equations},
journal = {Journal of Computational Mathematics},
year = {2004},
volume = {22},
number = {3},
pages = {447--456},
abstract = {
In this paper, we deal with the boundedness and the asymptotic stability of linear and one-leg multistep methods for generalized pantograph equations of neutral type, which arise from some fields of engineering. Some criteria of the boundedness and the asymptotic stability for the methods are obtained.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10318.html} }
TY - JOUR
T1 - Boundedness and Asymptotic Stability of Multistep Methods for Generalized Pantograph Equations
AU - Zhang , Chengjian
AU - Sun , Geng
JO - Journal of Computational Mathematics
VL - 3
SP - 447
EP - 456
PY - 2004
DA - 2004/06
SN - 22
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/10318.html
KW - Boundedness, Asymptotic stability, Multistep methods, Generalized pantograph equations.
AB -
In this paper, we deal with the boundedness and the asymptotic stability of linear and one-leg multistep methods for generalized pantograph equations of neutral type, which arise from some fields of engineering. Some criteria of the boundedness and the asymptotic stability for the methods are obtained.
Zhang , Chengjian and Sun , Geng. (2004). Boundedness and Asymptotic Stability of Multistep Methods for Generalized Pantograph Equations.
Journal of Computational Mathematics. 22 (3).
447-456.
doi:
Copy to clipboard