- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The Hamiltonian and multi-symplectic formulations for RLW equation are considered in this paper. A new twelve-point difference scheme which is equivalent to multi-symplectic Preissmann integrator is derived based on the multi-symplectic formulation of RLW equation. And the numerical experiments on solitary waves are also given. Comparing the numerical results for RLW equation with those for KdV equation, the inelastic behavior of RLW equation is shown.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10310.html} }The Hamiltonian and multi-symplectic formulations for RLW equation are considered in this paper. A new twelve-point difference scheme which is equivalent to multi-symplectic Preissmann integrator is derived based on the multi-symplectic formulation of RLW equation. And the numerical experiments on solitary waves are also given. Comparing the numerical results for RLW equation with those for KdV equation, the inelastic behavior of RLW equation is shown.