- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In the present work we are going to solve the boundary value problem for the quasilinear parabolic systems of partial differential equations with two space dimensions by the finite difference method with intrinsic parallelism. Some fundamental behaviors of general finite difference schemes with intrinsic parallelism for the mentioned problems are studied. By the method of a priori estimation of the discrete solutions of the nonlinear difference systems, and the interpolation formulas of the various norms of the discrete functions and the fixed point technique in finite dimensional Euclidean apace, the existence of the discrete vector solutions of the nonlinear difference system with intrinsic parallelism are proved. Moreover, the convergence of the discrete vector solutions of these difference schemes to the unique generalized solution of the original quasilinear parabolic problem is proved.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10281.html} }In the present work we are going to solve the boundary value problem for the quasilinear parabolic systems of partial differential equations with two space dimensions by the finite difference method with intrinsic parallelism. Some fundamental behaviors of general finite difference schemes with intrinsic parallelism for the mentioned problems are studied. By the method of a priori estimation of the discrete solutions of the nonlinear difference systems, and the interpolation formulas of the various norms of the discrete functions and the fixed point technique in finite dimensional Euclidean apace, the existence of the discrete vector solutions of the nonlinear difference system with intrinsic parallelism are proved. Moreover, the convergence of the discrete vector solutions of these difference schemes to the unique generalized solution of the original quasilinear parabolic problem is proved.