- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Trust region (TR) algorithms are a class of recently developed algorithms for nonlinear optimization. A new family of TR algorithms for unconstrained optimization, which is the extension of the usual TR method, is presented in this paper. When the objective function is bounded below and continuously differentiable, and the norm of the Hesse approximations increases at most linearly with the iteration number, we prove the global convergence of the algorithms. Limited numerical results are reported, which indicate that our new TR algorithm is competitive.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10276.html} }Trust region (TR) algorithms are a class of recently developed algorithms for nonlinear optimization. A new family of TR algorithms for unconstrained optimization, which is the extension of the usual TR method, is presented in this paper. When the objective function is bounded below and continuously differentiable, and the norm of the Hesse approximations increases at most linearly with the iteration number, we prove the global convergence of the algorithms. Limited numerical results are reported, which indicate that our new TR algorithm is competitive.