- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper, we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approximate solution admits an asymptotic error expansion in even powers of the step-size $h$, beginning with a term in $h^2$. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10223.html} }While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper, we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approximate solution admits an asymptotic error expansion in even powers of the step-size $h$, beginning with a term in $h^2$. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.