- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see additive extrapolation method before. This new method has a great advantage over additive extrapolation method because it keeps group property. If this method is used to construct higher order schemes from lower symplectic schemes, the higher order ones are also symplectic. First we introduce the concept of adjoint methods and some of their properties. We show that there is a self-adjoint scheme corresponding to every method. With this self-adjoint scheme of lower order, we can construct higher order schemes by multiplicative extrapolation method, which can be used to construct even much higher order schemes. Obviously this constructing process can be continued to get methods of arbitrary even order.
In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see additive extrapolation method before. This new method has a great advantage over additive extrapolation method because it keeps group property. If this method is used to construct higher order schemes from lower symplectic schemes, the higher order ones are also symplectic. First we introduce the concept of adjoint methods and some of their properties. We show that there is a self-adjoint scheme corresponding to every method. With this self-adjoint scheme of lower order, we can construct higher order schemes by multiplicative extrapolation method, which can be used to construct even much higher order schemes. Obviously this constructing process can be continued to get methods of arbitrary even order.