arrow
Volume 13, Issue 3
Adaptive High-Order A-WENO Schemes Based on a New Local Smoothness Indicator

Alina Chertock, Shaoshuai Chu & Alexander Kurganov

East Asian J. Appl. Math., 13 (2023), pp. 576-609.

Published online: 2023-05

Export citation
  • Abstract

We develop new adaptive alternative weighted essentially non-oscillatory (A-WENO) schemes for hyperbolic systems of conservation laws. The new schemes employ the recently proposed local characteristic decomposition based central-upwind numerical fluxes, the three-stage third-order strong stability preserving Runge-Kutta time integrator, and the fifth-order WENO-Z interpolation. The adaptive strategy is implemented by applying the limited interpolation only in the parts of the computational domain where the solution is identified as rough with the help of a smoothness indicator. We develop and use a new simple and robust local smoothness indicator (LSI), which is applied to the solutions computed at each of the three stages of the ODE solver. The new LSI and adaptive A-WENO schemes are tested on the Euler equations of gas dynamics. We implement the proposed LSI using the pressure, which remains smooth at contact discontinuities, while our goal is to detect other rough areas and apply the limited interpolation mostly in the neighborhoods of the shock waves. We demonstrate that the new adaptive schemes are highly accurate, non-oscillatory, and robust. They outperform their fully limited counterparts (the A-WENO schemes with the same numerical fluxes and ODE solver but with the WENO-Z interpolation employed everywhere) while being less computationally expensive.

  • AMS Subject Headings

65M06, 76M20, 76N15, 76L05, 35L65

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{EAJAM-13-576, author = {Chertock , AlinaChu , Shaoshuai and Kurganov , Alexander}, title = {Adaptive High-Order A-WENO Schemes Based on a New Local Smoothness Indicator}, journal = {East Asian Journal on Applied Mathematics}, year = {2023}, volume = {13}, number = {3}, pages = {576--609}, abstract = {

We develop new adaptive alternative weighted essentially non-oscillatory (A-WENO) schemes for hyperbolic systems of conservation laws. The new schemes employ the recently proposed local characteristic decomposition based central-upwind numerical fluxes, the three-stage third-order strong stability preserving Runge-Kutta time integrator, and the fifth-order WENO-Z interpolation. The adaptive strategy is implemented by applying the limited interpolation only in the parts of the computational domain where the solution is identified as rough with the help of a smoothness indicator. We develop and use a new simple and robust local smoothness indicator (LSI), which is applied to the solutions computed at each of the three stages of the ODE solver. The new LSI and adaptive A-WENO schemes are tested on the Euler equations of gas dynamics. We implement the proposed LSI using the pressure, which remains smooth at contact discontinuities, while our goal is to detect other rough areas and apply the limited interpolation mostly in the neighborhoods of the shock waves. We demonstrate that the new adaptive schemes are highly accurate, non-oscillatory, and robust. They outperform their fully limited counterparts (the A-WENO schemes with the same numerical fluxes and ODE solver but with the WENO-Z interpolation employed everywhere) while being less computationally expensive.

}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.2022-313.160123}, url = {http://global-sci.org/intro/article_detail/eajam/21723.html} }
TY - JOUR T1 - Adaptive High-Order A-WENO Schemes Based on a New Local Smoothness Indicator AU - Chertock , Alina AU - Chu , Shaoshuai AU - Kurganov , Alexander JO - East Asian Journal on Applied Mathematics VL - 3 SP - 576 EP - 609 PY - 2023 DA - 2023/05 SN - 13 DO - http://doi.org/10.4208/eajam.2022-313.160123 UR - https://global-sci.org/intro/article_detail/eajam/21723.html KW - Local smoothness indicator, scheme adaption, strong stability preserving Runge-Kutta methods, hyperbolic systems of conservation laws, A-WENO schemes. AB -

We develop new adaptive alternative weighted essentially non-oscillatory (A-WENO) schemes for hyperbolic systems of conservation laws. The new schemes employ the recently proposed local characteristic decomposition based central-upwind numerical fluxes, the three-stage third-order strong stability preserving Runge-Kutta time integrator, and the fifth-order WENO-Z interpolation. The adaptive strategy is implemented by applying the limited interpolation only in the parts of the computational domain where the solution is identified as rough with the help of a smoothness indicator. We develop and use a new simple and robust local smoothness indicator (LSI), which is applied to the solutions computed at each of the three stages of the ODE solver. The new LSI and adaptive A-WENO schemes are tested on the Euler equations of gas dynamics. We implement the proposed LSI using the pressure, which remains smooth at contact discontinuities, while our goal is to detect other rough areas and apply the limited interpolation mostly in the neighborhoods of the shock waves. We demonstrate that the new adaptive schemes are highly accurate, non-oscillatory, and robust. They outperform their fully limited counterparts (the A-WENO schemes with the same numerical fluxes and ODE solver but with the WENO-Z interpolation employed everywhere) while being less computationally expensive.

Chertock , AlinaChu , Shaoshuai and Kurganov , Alexander. (2023). Adaptive High-Order A-WENO Schemes Based on a New Local Smoothness Indicator. East Asian Journal on Applied Mathematics. 13 (3). 576-609. doi:10.4208/eajam.2022-313.160123
Copy to clipboard
The citation has been copied to your clipboard