East Asian J. Appl. Math., 12 (2022), pp. 449-469.
Published online: 2022-02
Cited by
- BibTex
- RIS
- TXT
Two-step modulus-based synchronous multisplitting and symmetric modulus-based synchronous multisplitting accelerated overrelaxation iteration methods are developed for solving large sparse nonlinear complementarity problems. The methods are based on the reformulation of the corresponding problem as a series of equivalent implicit fixed-point equations. This approach includes existing algorithms as special cases and present new models. The convergence of the methods is studied in the case of $H_+$ system matrices. Numerical results confirm the efficiency of the methods proposed.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.200721.250122}, url = {http://global-sci.org/intro/article_detail/eajam/20264.html} }Two-step modulus-based synchronous multisplitting and symmetric modulus-based synchronous multisplitting accelerated overrelaxation iteration methods are developed for solving large sparse nonlinear complementarity problems. The methods are based on the reformulation of the corresponding problem as a series of equivalent implicit fixed-point equations. This approach includes existing algorithms as special cases and present new models. The convergence of the methods is studied in the case of $H_+$ system matrices. Numerical results confirm the efficiency of the methods proposed.