East Asian J. Appl. Math., 11 (2021), pp. 234-254.
Published online: 2021-02
Cited by
- BibTex
- RIS
- TXT
A linear, unconditionally energy stable, and second-order accurate numerical scheme for the Ohta-Kawasaki equation modeling the diblock copolymer dynamics is proposed. The temporal discretisation is based on the Crank-Nicolson temporal discretisation and extrapolation. To suppress the dominance of nonlinear term, a proper stabilising parameter is used. All nonlinear parts are linearised by using the extrapolation from the information at preceding time levels. To solve the resulting linear system, an efficient linear multigrid algorithm is used. The unconditionally energy stability, mass conservation, and unique solvability of the scheme are analytically proved. In two-dimensional case, we run convergence and stability tests, and consider pattern formations for various average concentrations. Pattern formations in three-dimensional space are also studied.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.240620.071020 }, url = {http://global-sci.org/intro/article_detail/eajam/18633.html} }A linear, unconditionally energy stable, and second-order accurate numerical scheme for the Ohta-Kawasaki equation modeling the diblock copolymer dynamics is proposed. The temporal discretisation is based on the Crank-Nicolson temporal discretisation and extrapolation. To suppress the dominance of nonlinear term, a proper stabilising parameter is used. All nonlinear parts are linearised by using the extrapolation from the information at preceding time levels. To solve the resulting linear system, an efficient linear multigrid algorithm is used. The unconditionally energy stability, mass conservation, and unique solvability of the scheme are analytically proved. In two-dimensional case, we run convergence and stability tests, and consider pattern formations for various average concentrations. Pattern formations in three-dimensional space are also studied.