East Asian J. Appl. Math., 8 (2018), pp. 715-745.
Published online: 2018-10
Cited by
- BibTex
- RIS
- TXT
A conservative finite difference scheme for nonlinear space fractional Klein-Gordon-Schrödinger systems with high-degree Yukawa interaction is studied. We show that the arising difference equations are uniquely solvable and approximate solutions converge to the exact solution at the rate O ($τ^2+h^2$). Moreover, we prove that the scheme can be decoupled and preserves the mass and energy conservation laws. Numerous examples confirm theoretical results and demonstrate the efficiency of the scheme. They also show the influence of the fractional order and the high-degree term coefficient on the shape and the propagation velocity of solitary waves.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.220418.300618}, url = {http://global-sci.org/intro/article_detail/eajam/12816.html} }A conservative finite difference scheme for nonlinear space fractional Klein-Gordon-Schrödinger systems with high-degree Yukawa interaction is studied. We show that the arising difference equations are uniquely solvable and approximate solutions converge to the exact solution at the rate O ($τ^2+h^2$). Moreover, we prove that the scheme can be decoupled and preserves the mass and energy conservation laws. Numerous examples confirm theoretical results and demonstrate the efficiency of the scheme. They also show the influence of the fractional order and the high-degree term coefficient on the shape and the propagation velocity of solitary waves.