East Asian J. Appl. Math., 6 (2016), pp. 367-383.
Published online: 2018-02
Cited by
- BibTex
- RIS
- TXT
In this paper, we first construct a preconditioned two-parameter generalized Hermitian and skew-Hermitian splitting (PTGHSS) iteration method based on the two-parameter generalized Hermitian and skew-Hermitian splitting (TGHSS) iteration method for non-Hermitian positive definite linear systems. Then a class of PTGHSS-based iteration methods are proposed for solving weakly nonlinear systems based on separable property of the linear and nonlinear terms. The conditions for guaranteeing the local convergence are studied and the quasi-optimal iterative parameters are derived. Numerical experiments are implemented to show that the new methods are feasible and effective for large scale systems of weakly nonlinear systems.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.150116.240516a}, url = {http://global-sci.org/intro/article_detail/eajam/10805.html} }In this paper, we first construct a preconditioned two-parameter generalized Hermitian and skew-Hermitian splitting (PTGHSS) iteration method based on the two-parameter generalized Hermitian and skew-Hermitian splitting (TGHSS) iteration method for non-Hermitian positive definite linear systems. Then a class of PTGHSS-based iteration methods are proposed for solving weakly nonlinear systems based on separable property of the linear and nonlinear terms. The conditions for guaranteeing the local convergence are studied and the quasi-optimal iterative parameters are derived. Numerical experiments are implemented to show that the new methods are feasible and effective for large scale systems of weakly nonlinear systems.