East Asian J. Appl. Math., 5 (2015), pp. 160-175.
Published online: 2018-02
Cited by
- BibTex
- RIS
- TXT
The shift-and-invert Arnoldi method is a most effective approach to compute a few eigenpairs of a large non-Hermitian Toeplitz matrix pencil, where the Gohberg-Semencul formula can be used to obtain the Toeplitz inverse. However, two large non-Hermitian Toeplitz systems must be solved in the first step of this method, and the cost becomes prohibitive if the desired accuracy for this step is high — especially for some ill-conditioned problems. To overcome this difficulty, we establish a relationship between the errors in solving these systems and the residual of the Toeplitz eigenproblem. We consequently present a practical stopping criterion for their numerical solution, and propose an inexact shift-and-invert Arnoldi algorithm for the generalised Toeplitz eigenproblem. Numerical experiments illustrate our theoretical results and demonstrate the efficiency of the new algorithm.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.010914.130415a}, url = {http://global-sci.org/intro/article_detail/eajam/10791.html} }The shift-and-invert Arnoldi method is a most effective approach to compute a few eigenpairs of a large non-Hermitian Toeplitz matrix pencil, where the Gohberg-Semencul formula can be used to obtain the Toeplitz inverse. However, two large non-Hermitian Toeplitz systems must be solved in the first step of this method, and the cost becomes prohibitive if the desired accuracy for this step is high — especially for some ill-conditioned problems. To overcome this difficulty, we establish a relationship between the errors in solving these systems and the residual of the Toeplitz eigenproblem. We consequently present a practical stopping criterion for their numerical solution, and propose an inexact shift-and-invert Arnoldi algorithm for the generalised Toeplitz eigenproblem. Numerical experiments illustrate our theoretical results and demonstrate the efficiency of the new algorithm.