East Asian J. Appl. Math., 7 (2017), pp. 396-416.
Published online: 2018-02
Cited by
- BibTex
- RIS
- TXT
Multi-step modified Newton-HSS (MMN-HSS) methods, which are variants of inexact Newton methods, have been shown to be competitive for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices. Previously, we established these MMN-HSS methods under Lipschitz conditions, and we now present a semilocal convergence theorem assuming the nonlinear operator satisfies milder Hölder continuity conditions. Some numerical examples demonstrate our theoretical analysis.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.260416.270217a}, url = {http://global-sci.org/intro/article_detail/eajam/10756.html} }Multi-step modified Newton-HSS (MMN-HSS) methods, which are variants of inexact Newton methods, have been shown to be competitive for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices. Previously, we established these MMN-HSS methods under Lipschitz conditions, and we now present a semilocal convergence theorem assuming the nonlinear operator satisfies milder Hölder continuity conditions. Some numerical examples demonstrate our theoretical analysis.