East Asian J. Appl. Math., 7 (2017), pp. 837-851.
Published online: 2018-02
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
Pinning effect on current-induced magnetic transverse domain wall dynamics in nanostrip is studied for its potential application to new magnetic memory devices. In this study, we carry out a series of calculations by solving generalized Landau-Lifshitz equation involving a current spin transfer torque in one and two dimensional models. The critical current for the transverse wall depinning in nanostrip depends on the size of artificial rectangular defects on the edges of nanostrip. We show that there is intrinsic pinning potential for a defect such that the transverse wall oscillates damply around the pinning site with an intrinsic frequency if the applied current is below critical value. The amplification of the transverse wall oscillation for both displacement and maximum value of $m_3$ is significant by applying AC current and current pulses with appropriate frequency. We show that for given pinning potential, the oscillation amplitude as a function of the frequency of the AC current behaves like a Gaussian distribution in our numerical study, which is helpful to reduce strength of current to drive the transverse wall motion.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.181016.300517d}, url = {http://global-sci.org/intro/article_detail/eajam/10724.html} }Pinning effect on current-induced magnetic transverse domain wall dynamics in nanostrip is studied for its potential application to new magnetic memory devices. In this study, we carry out a series of calculations by solving generalized Landau-Lifshitz equation involving a current spin transfer torque in one and two dimensional models. The critical current for the transverse wall depinning in nanostrip depends on the size of artificial rectangular defects on the edges of nanostrip. We show that there is intrinsic pinning potential for a defect such that the transverse wall oscillates damply around the pinning site with an intrinsic frequency if the applied current is below critical value. The amplification of the transverse wall oscillation for both displacement and maximum value of $m_3$ is significant by applying AC current and current pulses with appropriate frequency. We show that for given pinning potential, the oscillation amplitude as a function of the frequency of the AC current behaves like a Gaussian distribution in our numerical study, which is helpful to reduce strength of current to drive the transverse wall motion.