- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 1069-1100.
Published online: 2017-10
Cited by
- BibTex
- RIS
- TXT
In this paper we are concerned with numerical methods for nonlinear time-dependent problem coupled by electron, ion and photon temperatures in two dimensions, which is called the 2D-3T heat conduction equations. We propose discontinuous Galerkin (DG) methods for the discretization of the equations. For solving the resulting discrete system, we employ two domain decomposition (DD) preconditioners, one of which is associated with the non-overlapping DDM and the other is based on DDM with small overlap. The preconditioners are constructed by dropping the couplings between particles and each preconditioner consists of three preconditioners with smaller matrix size. To gauge the efficiency of the preconditioners, we test two examples and make different settings of parameters. Numerical results show that the proposed preconditioners are very effective to the 2D-3T problem.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.240515.040517a}, url = {http://global-sci.org/intro/article_detail/cicp/9994.html} }In this paper we are concerned with numerical methods for nonlinear time-dependent problem coupled by electron, ion and photon temperatures in two dimensions, which is called the 2D-3T heat conduction equations. We propose discontinuous Galerkin (DG) methods for the discretization of the equations. For solving the resulting discrete system, we employ two domain decomposition (DD) preconditioners, one of which is associated with the non-overlapping DDM and the other is based on DDM with small overlap. The preconditioners are constructed by dropping the couplings between particles and each preconditioner consists of three preconditioners with smaller matrix size. To gauge the efficiency of the preconditioners, we test two examples and make different settings of parameters. Numerical results show that the proposed preconditioners are very effective to the 2D-3T problem.