- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 712-741.
Published online: 2017-09
Cited by
- BibTex
- RIS
- TXT
This paper presents comprehensive studies on two closely related problems of high speed collisionless gaseous jet from a circular exit and impinging on an inclined rectangular flat plate, where the plate surface can be diffuse or specular reflective. Gas-kinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include flow-field properties such as density, velocity components, temperature and pressure, and impingement surface properties such as coefficients of pressure, shear stress and heat flux. Also included are the averaged coefficients for pressure, friction, heat flux, moment over the whole plate, and the averaged distance from the moment center to the plate center. The final results include complex but accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. Exponential, trigonometric, and error functions are embedded in the solutions. The results illustrate that the past simple cosine function approach is rather crude, and should be used cautiously. The gas-kinetic method and processes are heuristic and can be used to investigate other external high Knudsen number impingement flow problems, including the flow-field and surface properties for high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0165}, url = {http://global-sci.org/intro/article_detail/cicp/9978.html} }This paper presents comprehensive studies on two closely related problems of high speed collisionless gaseous jet from a circular exit and impinging on an inclined rectangular flat plate, where the plate surface can be diffuse or specular reflective. Gas-kinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include flow-field properties such as density, velocity components, temperature and pressure, and impingement surface properties such as coefficients of pressure, shear stress and heat flux. Also included are the averaged coefficients for pressure, friction, heat flux, moment over the whole plate, and the averaged distance from the moment center to the plate center. The final results include complex but accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. Exponential, trigonometric, and error functions are embedded in the solutions. The results illustrate that the past simple cosine function approach is rather crude, and should be used cautiously. The gas-kinetic method and processes are heuristic and can be used to investigate other external high Knudsen number impingement flow problems, including the flow-field and surface properties for high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications.