- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 620-642.
Published online: 2017-09
Cited by
- BibTex
- RIS
- TXT
A numerical method is presented for the computation of externally forced Stokes flows bounded by the plane z=0 and satisfying periodic boundary conditions in the x and y directions. The motivation for this work is the simulation of flows generated by cilia, which are hair-like structures attached to the surface of cells that generate flows through coordinated beating. Large collections of cilia on a surface can be modeled using a doubly-periodic domain. The approach presented here is to derive a regularized version of the fundamental solution of the incompressible Stokes equations in Fourier space for the periodic directions and physical space for the z direction. This analytical expression for û(k,m;z) can then be used to compute the fluid velocity u(x,y,z) via a two-dimensional inverse fast Fourier transform for any fixed value of z. Repeating the computation for multiple values of z leads to the fluid velocity on a uniform grid in physical space. The zero-flow condition at the plane z =0 is enforced through the use of images. The performance of the method is illustrated by numerical examples of particle transport by nodal cilia, which verify optimal particle transport for parameters consistent with previous studies. The results also show that for two cilia in the periodic box, out-of-phase beating produces considerable more particle transport than in-phase beating.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0151}, url = {http://global-sci.org/intro/article_detail/cicp/9975.html} }A numerical method is presented for the computation of externally forced Stokes flows bounded by the plane z=0 and satisfying periodic boundary conditions in the x and y directions. The motivation for this work is the simulation of flows generated by cilia, which are hair-like structures attached to the surface of cells that generate flows through coordinated beating. Large collections of cilia on a surface can be modeled using a doubly-periodic domain. The approach presented here is to derive a regularized version of the fundamental solution of the incompressible Stokes equations in Fourier space for the periodic directions and physical space for the z direction. This analytical expression for û(k,m;z) can then be used to compute the fluid velocity u(x,y,z) via a two-dimensional inverse fast Fourier transform for any fixed value of z. Repeating the computation for multiple values of z leads to the fluid velocity on a uniform grid in physical space. The zero-flow condition at the plane z =0 is enforced through the use of images. The performance of the method is illustrated by numerical examples of particle transport by nodal cilia, which verify optimal particle transport for parameters consistent with previous studies. The results also show that for two cilia in the periodic box, out-of-phase beating produces considerable more particle transport than in-phase beating.