- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
The integral equation method for the simulation of the diffraction by optical gratings is an efficient numerical tool if profile gratings determined by simple cross-section curves are considered. This method in its recent version is capable to tackle profile curves with corners, gratings with thin coated layers, and diffraction scenarios with unfavorably large ratio period over wavelength. We discuss special implementational issues including the efficient evaluation of the quasi-periodic Green kernels, the quadrature algorithm, and the iterative solution of the arising systems of linear equations. Finally, as an example we present the simulation of echelle gratings which demonstrates the efficiency of our approach.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7991.html} }The integral equation method for the simulation of the diffraction by optical gratings is an efficient numerical tool if profile gratings determined by simple cross-section curves are considered. This method in its recent version is capable to tackle profile curves with corners, gratings with thin coated layers, and diffraction scenarios with unfavorably large ratio period over wavelength. We discuss special implementational issues including the efficient evaluation of the quasi-periodic Green kernels, the quadrature algorithm, and the iterative solution of the arising systems of linear equations. Finally, as an example we present the simulation of echelle gratings which demonstrates the efficiency of our approach.