- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Relative to single-band models, multiband models of strongly interacting electron systems are of growing interest because of their wider range of novel phenomena and their closer match to the electronic structure of real materials. In this brief review we discuss the physics of three multiband models (the three-band Hubbard, the periodic Anderson, and the Falicov-Kimball models) that was obtained by numerical simulations at zero temperature. We first give heuristic descriptions of the three principal numerical methods (the Lanczos, the density matrix renormalization group, and the constrained-path Monte Carlo methods). We then present generalized versions of the models and discuss the measurables most often associated with them. Finally, we summarize the results of their ground state numerical studies. While each model was developed to study specific phenomena, unexpected phenomena, usually of a subtle quantum mechanical nature, are often exhibited. Just as often, the predictions of the numerical simulations differ from those of mean-field theories.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7971.html} }Relative to single-band models, multiband models of strongly interacting electron systems are of growing interest because of their wider range of novel phenomena and their closer match to the electronic structure of real materials. In this brief review we discuss the physics of three multiband models (the three-band Hubbard, the periodic Anderson, and the Falicov-Kimball models) that was obtained by numerical simulations at zero temperature. We first give heuristic descriptions of the three principal numerical methods (the Lanczos, the density matrix renormalization group, and the constrained-path Monte Carlo methods). We then present generalized versions of the models and discuss the measurables most often associated with them. Finally, we summarize the results of their ground state numerical studies. While each model was developed to study specific phenomena, unexpected phenomena, usually of a subtle quantum mechanical nature, are often exhibited. Just as often, the predictions of the numerical simulations differ from those of mean-field theories.