- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In our simplfied description 'wealth' is money (m). A kinetic theory of a gas like model of money is investigated where two agents interact (trade) selectively and exchange some amount of money between them so that the sum of their money is unchanged and thus the total money of all the agents remains conserved. The probability distributions of individual money (P(m) vs. m) is seen to be influenced by certain ways of selective interactions. The distributions shift away from Boltzmann-Gibbs like the exponential distribution, and in some cases distributions emerge with power law tails known as Pareto's law (P(m) ∝ m−(1+α)). The power law is also observed in some other closely related conserved and discrete models. A discussion is provided with numerical support to obtain insight into the emergence of power laws in such models.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7967.html} }In our simplfied description 'wealth' is money (m). A kinetic theory of a gas like model of money is investigated where two agents interact (trade) selectively and exchange some amount of money between them so that the sum of their money is unchanged and thus the total money of all the agents remains conserved. The probability distributions of individual money (P(m) vs. m) is seen to be influenced by certain ways of selective interactions. The distributions shift away from Boltzmann-Gibbs like the exponential distribution, and in some cases distributions emerge with power law tails known as Pareto's law (P(m) ∝ m−(1+α)). The power law is also observed in some other closely related conserved and discrete models. A discussion is provided with numerical support to obtain insight into the emergence of power laws in such models.