- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
The electromagnetic backscattering of a crosscut of a cruise missile coated by a thin homogeneous layer made of radar absorbent material is modeled using a finite element method. Based on the radar cross section and a reflection coefficient, optimization problems are formulated for evaders and interrogators leading to optimal material parameters for the coating and optimal monostatic radar operating frequencies, respectively. Optimal coating materials are constructed for several radar frequencies. Tuning only dielectric permittivity gives a narrow frequency range of high absorption while also tuning magnetic permeability widens it significantly. However the coating layers considered do not provide substantial reduction of backscattering in the entire frequency range from 0.2 to 1.6 GHz. Computational experiments also demonstrate that the reflection coefficient based on a simple planar geometry can predict well the strength of radar cross section in the sector of interest with a substantially reduced computational burden.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7961.html} }The electromagnetic backscattering of a crosscut of a cruise missile coated by a thin homogeneous layer made of radar absorbent material is modeled using a finite element method. Based on the radar cross section and a reflection coefficient, optimization problems are formulated for evaders and interrogators leading to optimal material parameters for the coating and optimal monostatic radar operating frequencies, respectively. Optimal coating materials are constructed for several radar frequencies. Tuning only dielectric permittivity gives a narrow frequency range of high absorption while also tuning magnetic permeability widens it significantly. However the coating layers considered do not provide substantial reduction of backscattering in the entire frequency range from 0.2 to 1.6 GHz. Computational experiments also demonstrate that the reflection coefficient based on a simple planar geometry can predict well the strength of radar cross section in the sector of interest with a substantially reduced computational burden.