- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
The typical elements in a numerical simulation of fluid flow using moving meshes are a time integration scheme, a rezone method in which a new mesh is defined, and a remapping (conservative interpolation) in which a solution is transferred to the new mesh. The objective of the rezone method is to move the computational mesh to improve the robustness, accuracy and eventually efficiency of the simulation. In this paper, we consider the one-dimensional viscous Burgers' equation and describe a new rezone strategy which minimizes the L2 norm of error and maintains mesh smoothness. The efficiency of the proposed method is demonstrated with numerical examples.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7950.html} }The typical elements in a numerical simulation of fluid flow using moving meshes are a time integration scheme, a rezone method in which a new mesh is defined, and a remapping (conservative interpolation) in which a solution is transferred to the new mesh. The objective of the rezone method is to move the computational mesh to improve the robustness, accuracy and eventually efficiency of the simulation. In this paper, we consider the one-dimensional viscous Burgers' equation and describe a new rezone strategy which minimizes the L2 norm of error and maintains mesh smoothness. The efficiency of the proposed method is demonstrated with numerical examples.