arrow
Volume 2, Issue 5
The Lid-Driven Square Cavity Flow: From Stationary to Time Periodic and Chaotic

S. Garcia

Commun. Comput. Phys., 2 (2007), pp. 900-932.

Published online: 2007-02

Export citation
  • Abstract

Ranging from Re=100 to Re=20,000, several computational experiments are conducted, Re being the Reynolds number. The primary vortex stays put, and the long-term dynamic behavior of the small vortices determines the nature of the solutions. For low Reynolds numbers, the solution is stationary; for moderate Reynolds numbers, it is time periodic. For high Reynolds numbers, the solution is neither stationary nor time periodic: the solution becomes chaotic. Of the small vortices, the merging and the splitting, the appearance and the disappearance, and, sometimes, the dragging away from one corner to another and the impeding of the merging—these mark the route to chaos. For high Reynolds numbers, over weak fundamental frequencies appears a very low frequency dominating the spectra—this very low frequency being weaker than clear-cut fundamental frequencies seems an indication that the global attractor has been attained. The global attractor seems reached for Reynolds numbers up to Re=15,000. This is the lid-driven square cavity flow; the motivations for studying this flow are recalled in the Introduction.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-2-900, author = {S. Garcia}, title = {The Lid-Driven Square Cavity Flow: From Stationary to Time Periodic and Chaotic}, journal = {Communications in Computational Physics}, year = {2007}, volume = {2}, number = {5}, pages = {900--932}, abstract = {

Ranging from Re=100 to Re=20,000, several computational experiments are conducted, Re being the Reynolds number. The primary vortex stays put, and the long-term dynamic behavior of the small vortices determines the nature of the solutions. For low Reynolds numbers, the solution is stationary; for moderate Reynolds numbers, it is time periodic. For high Reynolds numbers, the solution is neither stationary nor time periodic: the solution becomes chaotic. Of the small vortices, the merging and the splitting, the appearance and the disappearance, and, sometimes, the dragging away from one corner to another and the impeding of the merging—these mark the route to chaos. For high Reynolds numbers, over weak fundamental frequencies appears a very low frequency dominating the spectra—this very low frequency being weaker than clear-cut fundamental frequencies seems an indication that the global attractor has been attained. The global attractor seems reached for Reynolds numbers up to Re=15,000. This is the lid-driven square cavity flow; the motivations for studying this flow are recalled in the Introduction.

}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7932.html} }
TY - JOUR T1 - The Lid-Driven Square Cavity Flow: From Stationary to Time Periodic and Chaotic AU - S. Garcia JO - Communications in Computational Physics VL - 5 SP - 900 EP - 932 PY - 2007 DA - 2007/02 SN - 2 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cicp/7932.html KW - AB -

Ranging from Re=100 to Re=20,000, several computational experiments are conducted, Re being the Reynolds number. The primary vortex stays put, and the long-term dynamic behavior of the small vortices determines the nature of the solutions. For low Reynolds numbers, the solution is stationary; for moderate Reynolds numbers, it is time periodic. For high Reynolds numbers, the solution is neither stationary nor time periodic: the solution becomes chaotic. Of the small vortices, the merging and the splitting, the appearance and the disappearance, and, sometimes, the dragging away from one corner to another and the impeding of the merging—these mark the route to chaos. For high Reynolds numbers, over weak fundamental frequencies appears a very low frequency dominating the spectra—this very low frequency being weaker than clear-cut fundamental frequencies seems an indication that the global attractor has been attained. The global attractor seems reached for Reynolds numbers up to Re=15,000. This is the lid-driven square cavity flow; the motivations for studying this flow are recalled in the Introduction.

S. Garcia. (2007). The Lid-Driven Square Cavity Flow: From Stationary to Time Periodic and Chaotic. Communications in Computational Physics. 2 (5). 900-932. doi:
Copy to clipboard
The citation has been copied to your clipboard