- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We consider the Thomas-Fermi-von Weizsacker energy functional, with the Wang-Teter correction, and present an efficient real space method for Orbital-Free Density Functional Theory. It is proved that the energy minimizer satisfies a second order quasilinear elliptic equation, even at the points where the electron density vanishes. This information is used to construct an efficient energy minimization method for the resulting constrained problem, based on the truncated Newton method for unconstrained optimization. The Wang-Teter kernel is analyzed, and its behavior in real space at short and far distances is determined. A second order accurate discretization of the energy is obtained using finite differences. The efficiency and accuracy of the method is illustrated with numerical simulations in an Aluminium FCC lattice.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7909.html} }We consider the Thomas-Fermi-von Weizsacker energy functional, with the Wang-Teter correction, and present an efficient real space method for Orbital-Free Density Functional Theory. It is proved that the energy minimizer satisfies a second order quasilinear elliptic equation, even at the points where the electron density vanishes. This information is used to construct an efficient energy minimization method for the resulting constrained problem, based on the truncated Newton method for unconstrained optimization. The Wang-Teter kernel is analyzed, and its behavior in real space at short and far distances is determined. A second order accurate discretization of the energy is obtained using finite differences. The efficiency and accuracy of the method is illustrated with numerical simulations in an Aluminium FCC lattice.