- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
A high order multidomain spectral difference method has been developed for the three dimensional Navier-Stokes equations on unstructured hexahedral grids. The method is easy to implement since it involves one-dimensional operations only, and does not involve surface or volume integrals. Universal reconstructions are obtained by distributing solution and flux points in a geometrically similar manner in a unit cube. The concepts of the Riemann solver and high-order local representations are applied to achieve conservation and high order accuracy. In this paper, accuracy studies are performed to numerically verify the order of accuracy using flow problems with analytical solutions. High order of accuracy and spectral convergence are obtained for the propagation of an isotropic vortex and Couette flow. The capability of the method for both inviscid and viscous flow problems with curved boundaries is also demonstrated.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7908.html} }A high order multidomain spectral difference method has been developed for the three dimensional Navier-Stokes equations on unstructured hexahedral grids. The method is easy to implement since it involves one-dimensional operations only, and does not involve surface or volume integrals. Universal reconstructions are obtained by distributing solution and flux points in a geometrically similar manner in a unit cube. The concepts of the Riemann solver and high-order local representations are applied to achieve conservation and high order accuracy. In this paper, accuracy studies are performed to numerically verify the order of accuracy using flow problems with analytical solutions. High order of accuracy and spectral convergence are obtained for the propagation of an isotropic vortex and Couette flow. The capability of the method for both inviscid and viscous flow problems with curved boundaries is also demonstrated.