- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
A numerical algorithm for effective incorporation of parametric uncertainty into mathematical models is presented. The uncertain parameters are modeled as random variables, and the governing equations are treated as stochastic. The solutions, or quantities of interests, are expressed as convergent series of orthogonal polynomial expansions in terms of the input random parameters. A high-order stochastic collocation method is employed to solve the solution statistics, and more importantly, to reconstruct the polynomial expansion. While retaining the high accuracy by polynomial expansion, the resulting “pseudo-spectral” type algorithm is straightforward to implement as it requires only repetitive deterministic simulations. An estimate on error bounded is presented, along with numerical examples for problems with relatively complicated forms of governing equations.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7907.html} }A numerical algorithm for effective incorporation of parametric uncertainty into mathematical models is presented. The uncertain parameters are modeled as random variables, and the governing equations are treated as stochastic. The solutions, or quantities of interests, are expressed as convergent series of orthogonal polynomial expansions in terms of the input random parameters. A high-order stochastic collocation method is employed to solve the solution statistics, and more importantly, to reconstruct the polynomial expansion. While retaining the high accuracy by polynomial expansion, the resulting “pseudo-spectral” type algorithm is straightforward to implement as it requires only repetitive deterministic simulations. An estimate on error bounded is presented, along with numerical examples for problems with relatively complicated forms of governing equations.