- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
This paper introduces an extension of the time-splitting spectral (TSSP) method for solving a general model of three-wave optical interactions, which typically arises from nonlinear optics, when the transmission media has competing quadratic and cubic nonlinearities. The key idea is to formulate the terms related to quadratic and cubic nonlinearities into a Hermitian matrix in a proper way, which allows us to develop an explicit and unconditionally stable numerical method for the problem. Furthermore, the method is spectral accurate in transverse coordinates and second-order accurate in propagation direction, is time reversible and time transverse invariant, and conserves the total wave energy (or power or the norm of the solutions) in discretized level. Numerical examples are presented to demonstrate the efficiency and high resolution of the method. Finally the method is applied to study dynamics and interactions between three-wave solitons and continuous waves in media with competing quadratic and cubic nonlinearities in one dimension (1D) and 2D.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7899.html} }This paper introduces an extension of the time-splitting spectral (TSSP) method for solving a general model of three-wave optical interactions, which typically arises from nonlinear optics, when the transmission media has competing quadratic and cubic nonlinearities. The key idea is to formulate the terms related to quadratic and cubic nonlinearities into a Hermitian matrix in a proper way, which allows us to develop an explicit and unconditionally stable numerical method for the problem. Furthermore, the method is spectral accurate in transverse coordinates and second-order accurate in propagation direction, is time reversible and time transverse invariant, and conserves the total wave energy (or power or the norm of the solutions) in discretized level. Numerical examples are presented to demonstrate the efficiency and high resolution of the method. Finally the method is applied to study dynamics and interactions between three-wave solitons and continuous waves in media with competing quadratic and cubic nonlinearities in one dimension (1D) and 2D.