- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
The ability to reliably detect coronary artery disease based on the acoustic noises produced by a stenosis can provide a simple, non-invasive technique for diagnosis. Current research exploits the shear wave fields in body tissue to detect and analyze coronary stenoses. The methods and ideas outlined in earlier efforts [6] including a mathematical model utilizing an internal strain variable approximation to the quasi-linear viscoelastic constitutive equation proposed by Fung in [19] is extended here. As an initial investigation, a homogeneous two-dimensional viscoelastic geometry is considered. Being uniform in θ, this geometry behaves as a one dimensional model, and the results generated from it are compared to the one dimensional results from [6]. To allow for different assumptions on the elastic response, several variations of the model are considered. A statistical significance test is employed to determine if the more complex models are significant improvements. After calibrating the model with a comparison to previous findings, more complicated geometries are considered. Simulations involving a heterogeneous geometry with a uniform ring running through the original medium, a θ-dependent model which considers a rigid partial occlusion formed along the inner radius of the geometry, and a model which combines the ring and occlusion are presented.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7867.html} }The ability to reliably detect coronary artery disease based on the acoustic noises produced by a stenosis can provide a simple, non-invasive technique for diagnosis. Current research exploits the shear wave fields in body tissue to detect and analyze coronary stenoses. The methods and ideas outlined in earlier efforts [6] including a mathematical model utilizing an internal strain variable approximation to the quasi-linear viscoelastic constitutive equation proposed by Fung in [19] is extended here. As an initial investigation, a homogeneous two-dimensional viscoelastic geometry is considered. Being uniform in θ, this geometry behaves as a one dimensional model, and the results generated from it are compared to the one dimensional results from [6]. To allow for different assumptions on the elastic response, several variations of the model are considered. A statistical significance test is employed to determine if the more complex models are significant improvements. After calibrating the model with a comparison to previous findings, more complicated geometries are considered. Simulations involving a heterogeneous geometry with a uniform ring running through the original medium, a θ-dependent model which considers a rigid partial occlusion formed along the inner radius of the geometry, and a model which combines the ring and occlusion are presented.