- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this paper, we present an adaptive moving mesh algorithm for meshes of unstructured polyhedra in three space dimensions. The algorithm automatically adjusts the size of the elements with time and position in the physical domain to resolve the relevant scales in multiscale physical systems while minimizing computational costs. The algorithm is a generalization of the moving mesh methods based on harmonic mappings developed by Li et al. [J. Comput. Phys., 170 (2001), pp. 562-588, and 177 (2002), pp. 365-393]. To make 3D moving mesh simulations possible, the key is to develop an efficient mesh redistribution procedure so that this part will cost as little as possible comparing with the solution evolution part. Since the mesh redistribution procedure normally requires to solve large size matrix equations, we will describe a procedure to decouple the matrix equation to a much simpler block-tridiagonal type which can be efficiently solved by a particularly designed multi-grid method. To demonstrate the performance of the proposed 3D moving mesh strategy, the algorithm is implemented in finite element simulations of fluid-fluid interface interactions in multiphase flows. To demonstrate the main ideas, we consider the formation of drops by using an energetic variational phase field model which describes the motion of mixtures of two incompressible fluids. Numerical results on two- and three-dimensional simulations will be presented.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7866.html} }In this paper, we present an adaptive moving mesh algorithm for meshes of unstructured polyhedra in three space dimensions. The algorithm automatically adjusts the size of the elements with time and position in the physical domain to resolve the relevant scales in multiscale physical systems while minimizing computational costs. The algorithm is a generalization of the moving mesh methods based on harmonic mappings developed by Li et al. [J. Comput. Phys., 170 (2001), pp. 562-588, and 177 (2002), pp. 365-393]. To make 3D moving mesh simulations possible, the key is to develop an efficient mesh redistribution procedure so that this part will cost as little as possible comparing with the solution evolution part. Since the mesh redistribution procedure normally requires to solve large size matrix equations, we will describe a procedure to decouple the matrix equation to a much simpler block-tridiagonal type which can be efficiently solved by a particularly designed multi-grid method. To demonstrate the performance of the proposed 3D moving mesh strategy, the algorithm is implemented in finite element simulations of fluid-fluid interface interactions in multiphase flows. To demonstrate the main ideas, we consider the formation of drops by using an energetic variational phase field model which describes the motion of mixtures of two incompressible fluids. Numerical results on two- and three-dimensional simulations will be presented.