- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
For simple hydrodynamic solutions, where the pressure and the velocity are polynomial functions of the coordinates, exact microscopic solutions are constructed for the two-relaxation-time (TRT) Lattice Boltzmann model with variable forcing and supported by exact boundary schemes. We show how simple numerical and analytical solutions can be interrelated for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) multi-reflection (MR) type schemes. Special care is taken to adapt them for corners, to examine the uniqueness of the obtained steady solutions and staggered invariants, to validate their exact parametrization by the non-dimensional hydrodynamic and a "kinetic" (collision) number. We also present an inlet/outlet "constant mass flux" condition. We show, both analytically and numerically, that the kinetic boundary schemes may result in the appearance of Knudsen layers which are beyond the methodology of the Chapman-Enskog analysis. Time dependent Dirichlet boundary conditions are investigated for pulsatile flow driven by an oscillating pressure drop or forcing. Analytical approximations are constructed in order to extend the pulsatile solution for compressible regimes.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7865.html} }For simple hydrodynamic solutions, where the pressure and the velocity are polynomial functions of the coordinates, exact microscopic solutions are constructed for the two-relaxation-time (TRT) Lattice Boltzmann model with variable forcing and supported by exact boundary schemes. We show how simple numerical and analytical solutions can be interrelated for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) multi-reflection (MR) type schemes. Special care is taken to adapt them for corners, to examine the uniqueness of the obtained steady solutions and staggered invariants, to validate their exact parametrization by the non-dimensional hydrodynamic and a "kinetic" (collision) number. We also present an inlet/outlet "constant mass flux" condition. We show, both analytically and numerically, that the kinetic boundary schemes may result in the appearance of Knudsen layers which are beyond the methodology of the Chapman-Enskog analysis. Time dependent Dirichlet boundary conditions are investigated for pulsatile flow driven by an oscillating pressure drop or forcing. Analytical approximations are constructed in order to extend the pulsatile solution for compressible regimes.